Comments on Jakub Dotlačil's presentation, 'Dynamic properties of question words'

Matthew Gotham

University of Oslo and Centre for Advanced Study

PALLMYR-XI, UCL, 10 November 2017

Making ICDRT

Inquisitive semantics for questions

Who is walking?

Making ICDRT

Inquisitive semantics

for questions

Who is walking?

+

CDRT

for anaphora

Someone¹ is walking. He₁ is singing.

Making ICDRT

Inquisitive semantics

for questions

Who is walking?

+

CDRT

for anaphora

Someone¹ is walking. He_1 is singing.

=

ICDRT

for anaphora to wh-words

Who¹ is walking? Is he_1 singing?

'Someone is walking'

Anaphora to wh-words

Why does it work?

Anaphora to wh-words

Why does it work?

Basically, because in ICDRT wh-words words are treated the same as indefinites, semantically.*

Anaphora to wh-words

Why does it work?

Basically, because in ICDRT wh-words words are treated the same as indefinites, semantically.*

```
[Someone<sup>1</sup> is walking. You know him<sub>1</sub>.]
= [Who^1 \text{ is walking? You know him}_1.]
= \lambda p^{s \to t}.\lambda i^c.\lambda o^c.i[x_1]o \land p \subseteq (\lambda w^s.\text{walk}(x_1(o)))
\land p \subseteq (\lambda w^s.\text{know}(\text{you}, x_1(o), w))
```

*To be qualified.

I.e., treat constituent questions just like existential statements

It's a distinctive feature of inquisitive semantics that statements and quesitons have the same semantic type.

- It's a distinctive feature of inquisitive semantics that statements and quesitons have the same semantic type.
- To adapt a non-inquisitive system to treat indefinites and wh-words the same, you would have to either
 - raise statements to the type of questions ... in which case you would have an inquisitive system, or

- It's a distinctive feature of inquisitive semantics that statements and quesitons have the same semantic type.
- To adapt a non-inquisitive system to treat indefinites and wh-words the same, you would have to either
 - raise statements to the type of questions ... in which case you would have an inquisitive system, or
 - lower questions to the type of statements ... in which case you the treatment of questions would be inadequate.

- It's a distinctive feature of inquisitive semantics that statements and quesitons have the same semantic type.
- To adapt a non-inquisitive system to treat indefinites and wh-words the same, you would have to either
 - raise statements to the type of questions ...in which case you would have an inquisitive system, or
 - lower questions to the type of statements ... in which case you the treatment of questions would be inadequate.
- Inquisitive semantics gives you the notion of answers to the question (resolutions to the issue).
 - $p^{s \to t}$ resolves $\phi^{(s \to t) \to t} \Leftrightarrow \phi(p)$
 - E.g. $(\lambda w^s.\text{walk}(\text{john}, w))$ resolves $(\lambda p^{s \to t}.\exists x^e.p \subseteq (\lambda w^s.\text{walk}(x, w)))$

But still...

- There has to be some semantic difference between indefinites and wh-words.
 - (I know someone's walking vs. I know who's walking.)

But still...

- There has to be some semantic difference between indefinites and wh-words.
 - (I know someone's walking vs. I know who's walking.)
- Proposal (from ms. Jakub sent me): unlike *Someone is walking.*, *Who is walking?* **presupposes** that someone is walking.
 - Q Who is walking?
 - A # Someone.

But still...

- There has to be some semantic difference between indefinites and wh-words.
 - (I know someone's walking vs. I know who's walking.)
- Proposal (from ms. Jakub sent me): unlike *Someone is walking.*, *Who is walking?* **presupposes** that someone is walking.
 - Q Who is walking?
 - A # Someone.
- As far as I know, this proposal hasn't been formalized.

A suggestion

'Someone is walking'

The constrast

in a trivalent semantics

Someone¹ is walking.

$$\lambda p^{s \to t} . \lambda q^{s \to t} . \lambda i^c . \lambda o^c . i[x_1] o \wedge q \subseteq (p \cap \lambda w^s . \mathbf{walk}(x_1(o), w))$$

Who¹ is walking?

$$\lambda p^{s \to t}.\lambda q^{s \to t}.\lambda i^c.\lambda o^c.i[x_1]o \land q \subseteq (p \cap \lambda w^s.\mathbf{walk}(x_1(o), w))$$
$$\land \partial (p \subseteq \lambda w^s.\exists x^e.\mathbf{walk}(x, w))$$

Definitions

These haven't been properly checked yet...

$$p^{s \to t}$$
 supports $\Phi^{(s \to t) \to (s \to t) \to c \to c \to t} \Leftrightarrow \forall i^c. \exists o^c. \Phi(\lambda w^s. \top)(p)(i)(o)$

walks

$$\lambda d^{c \to e} . \lambda p^{s \to t} . \lambda q^{s \to t} . \lambda i^c . \lambda o^c . i = o \land q \subseteq (p \cap \lambda w^s. \mathbf{walk}(d(o), w))$$

someoneⁿ

$$\lambda P.\lambda p^{s\to t}.\lambda q^{s\to t}.\lambda i^c.\lambda o^c.\exists k^c.i[x_n]k \wedge P(x_n)(p)(q)(k)(o)$$

whon

$$\lambda P.\lambda p^{s\to t}.\lambda q^{s\to t}.\lambda i^c.\lambda o^c.\exists k^c.i[x_n]k \wedge P(x_n)(p)(q)(k)(o)$$

 $\wedge \partial (p \text{ supports})$

$$\lambda r^{s \to t} . \lambda s^{s \to t} . \lambda j^c . \lambda l^c . \exists x^e . P(\lambda m^c . x)(r)(s)(j)(l)$$

Where
$$P :: (c \rightarrow e) \rightarrow (s \rightarrow t) \rightarrow (s \rightarrow t) \rightarrow c \rightarrow c \rightarrow t$$