
Constraining scope ambiguity in LFG+Glue

Matthew Gotham
University of Oxford

24th International LFG Conference, Australian National University
8–10 July 2019

1/40

Outline

Scope (non-)ambiguity in LFG+Glue

Background

Scope rigidity–what this talk is about

A previous proposal

Node orderings

Problems with the node ordering approach

My proposal

Using a counter

Re-enabling scope flexibility

Reflections

2/40

Outline

Scope (non-)ambiguity in LFG+Glue

Background

Scope rigidity–what this talk is about

A previous proposal

Node orderings

Problems with the node ordering approach

My proposal

Using a counter

Re-enabling scope flexibility

Reflections

2/40

Outline

Scope (non-)ambiguity in LFG+Glue

Background

Scope rigidity–what this talk is about

A previous proposal

Node orderings

Problems with the node ordering approach

My proposal

Using a counter

Re-enabling scope flexibility

Reflections

2/40

Outline

Scope (non-)ambiguity in LFG+Glue

Background

Scope rigidity–what this talk is about

A previous proposal

Node orderings

Problems with the node ordering approach

My proposal

Using a counter

Re-enabling scope flexibility

Reflections

2/40

Scope (non-)ambiguity in LFG+Glue

Scope ambiguity in English

(1) A police officer guards every exit.

⇒ ∃x.officer′x ∧ ∀y.exit′y → guard′xy (surface scope)
⇒ ∀y.exit′y → ∃x.officer′x ∧ guard′xy (inverse scope)

F :



pred ‘guard’

subj G :

pred ‘police officer’

spec I :
[
pred ‘a’

]
obj H :

pred ‘exit’

spec J :
[
pred ‘every’

]



3/40

Scope ambiguity in English

(1) A police officer guards every exit.

⇒ ∃x.officer′x ∧ ∀y.exit′y → guard′xy (surface scope)
⇒ ∀y.exit′y → ∃x.officer′x ∧ guard′xy (inverse scope)

F :



pred ‘guard’

subj G :

pred ‘police officer’

spec I :
[
pred ‘a’

]
obj H :

pred ‘exit’

spec J :
[
pred ‘every’

]


3/40

The Glue account: multiple proofs

a λP.λQ.∃x.Px ∧ Qx
: ((spec ↑)(↑)((((spec ↑)(%A)(%A)
%A = (gf* ↑)

police officer officer′ : (spec ↑)(↑
guards guard′ : (↑ subj)(((↑ obj)(↑)
every λP.λQ.∀y.Py → Qy

: ((spec ↑)(↑)((((spec ↑)(%B)(%B)
%B = (gf* ↑)

exit exit′ : (spec ↑)(↑

4/40

The Glue account: multiple proofs

a λP.λQ.∃x.Px ∧ Qx
: (G(I)(((G(F)(F)
%A := F

police officer officer′ : G(I
guards guard′ : G((H(F)
every λP.λQ.∀y.Py → Qy

: (H(J)(((H(F)(F)
%B := F

exit exit′ : H(J

4/40

Surface scope interpretation

[G]1
guard′ :

G((H(F)
H(F

every′ :
(H(J)(

((H(F)(F)
exit′ :
H(J

(H(F)(F
F

G(F 1

a′ :
(G(I)(

((G(F)(F)
officer′ :
G(I

(G(F)(F
a′officer′(λx.every′exit′(guard′x)) : F

≡ ∃x.officer′x ∧ ∀y.exit′y → guard′xy : F

5/40

Inverse scope interpretation

[H]2
[G]1

guard′ :
G((H(F)
H(F

F
G(F 1

a′ :
(G(I)(

((G(F)(F)
officer′ :
G(I

(G(F)(F
F

H(F 2

every′ :
(H(J)(

((H(F)(F)
exit′ :
H(J

(H(F)(F
every′exit′(λy.a′officer′(λx.guard′xy)) : F
≡ ∀y.exit′y → ∃x.officer′x ∧ guard′xy : F

6/40

Scope rigidity in other languages

(2) Ein
A

Polizist
police officer

bewacht
guards

jeden
every

Ausgang.
exit

(German)

(3) Yi-ming
One-CL

jingcha
police officer

kanshou
guards

meige
every

chukou.
exit

(Chinese)

⇒ ∃x.officer′x ∧ ∀y.exit′y → guard′xy
; ∀y.exit′y → ∃x.officer′x ∧ guard′xy (surface scope only)

7/40

Scope rigidity in English

(4) Hilary gave a student every grade.

⇒ ∃y.student′y ∧ ∀x.grade′x → give′hilary′xy
; ∀x.grade′x → ∃y.student′y ∧ give′hilary′xy

(surface scope only within the double object)

8/40

Not scope ‘islands’

(5) If every student passes, the lecturer will be happy.

⇒ (∀y.student′y → pass′y) → happy′(ιx.lecturer′x)
; ∀y.student′y → (pass′y → happy′(ιx.lecturer′x))

9/40

Constraining the path

(5) If every student passes, the lecturer will be happy.

F :



pred ‘happy’
subj [“the lecturer”]

adj


G :


pred ‘pass’
compform ‘if’

subj H :

pred ‘student’

spec I :
[
pred ‘every’

]






every λP.λQ.∀y.Py → Qy

: ((spec ↑)(↑)((((spec ↑)(%B)(%B)
%B = (path ↑)

10/40

Constraining the path

(5) If every student passes, the lecturer will be happy.

F :



pred ‘happy’
subj [“the lecturer”]

adj


G :


pred ‘pass’
compform ‘if’

subj H :

pred ‘student’

spec I :
[
pred ‘every’

]






every λP.λQ.∀y.Py → Qy

: (H(I)(((H(%B)(%B)
%B = (path ↑)

(where path is such that %B can be G but not F) 10/40

Not an available strategy here

(2) Ein Polizist bewacht jeden Ausgang.

F :



pred ‘guard’
topic G : [“Ein Polizist”]
subj

obj H :

pred ‘exit’

spec J :
[
pred ‘every’

]


jeden λP.λQ.∀y.Py → Qy :

: ((spec ↑)(↑)((((spec ↑)(%B)(%B)
%B = (path ↑)

11/40

Not an available strategy here

(2) Ein Polizist bewacht jeden Ausgang.

F :



pred ‘guard’
topic G : [“Ein Polizist”]
subj

obj H :

pred ‘exit’

spec J :
[
pred ‘every’

]


jeden λP.λQ.∀y.Py → Qy :

: (H(I)(((H(%B)(%B)
%B = (path ↑)

We have %B := F for both the surface scope and the inverse
scope interpretation. 11/40

A previous proposal

Node orderings

Crouch & van Genabith (1999) propose to analzye scope rigidity
like this:

bewacht V
guard′ : (↑ subj)(((↑ obj)(↑)
(↑ subj) = (↑ topic) ⇒ (↑ subj) � (↑ obj)

• The last line is a node ordering: a constraint on linear
logic proofs.

• Roughly, α � β means that in every licit linear logic proof,
no instance of β occurs strictly lower down than every
instance of α.

12/40

Node orderings

Crouch & van Genabith (1999) propose to analzye scope rigidity
like this:

bewacht V
guard′ : (↑ subj)(((↑ obj)(↑)
(↑ subj) = (↑ topic) ⇒ (↑ subj) � (↑ obj)

• The last line is a node ordering: a constraint on linear
logic proofs.

• Roughly, α � β means that in every licit linear logic proof,
no instance of β occurs strictly lower down than every
instance of α.

12/40

Node orderings

Crouch & van Genabith (1999) propose to analzye scope rigidity
like this:

bewacht V
guard′ : (↑ subj)(((↑ obj)(↑)
(↑ subj) = (↑ topic) ⇒ (↑ subj) � (↑ obj)

• The last line is a node ordering: a constraint on linear
logic proofs.

• Roughly, α � β means that in every licit linear logic proof,
no instance of β occurs strictly lower down than every
instance of α.

12/40

Node orderings in action

(2) Ein Polizist bewacht jeden Ausgang.

F :


pred ‘guard’
topic G : [“Ein Polizist”]
subj
obj H : [“jeden Ausgang”]


bewacht V

guard′ : (↑ subj)(((↑ obj)(↑)
(↑ subj) = (↑ topic) ⇒ (↑ subj) � (↑ obj)

13/40

Node orderings in action

(2) Ein Polizist bewacht jeden Ausgang.

F :


pred ‘guard’
topic G : [“Ein Polizist”]
subj
obj H : [“jeden Ausgang”]


bewacht V

guard′ : G((H(F)
G = G⇒ G � H

13/40

G � H

[G]1 G((H(F)
H(F

jeden Ausgang
⇓

(H(F)(F
F

G(F 1
ein Polizit

⇓
(G(F)(F

F

Surface
scope
X

[H]2
[G]1 G((H(F)

H(F
F

G(F 1
ein Polizist

⇓
(G(F)(F

F
H(F 2

jeden Ausgang
⇓

(H(F)(F
F

Inverse
scope
×

14/40

What is a proof?

Node orderings are defined over derivations
A derivation is a tree-like structure of sequents […] Rep-
resent derivations D as triples 〈S, >S, $〉 where S is the
set of points in the tree, >S is a transitive , asymmetric
ordering over them, and $ is a function mapping the
points onto their corresponding sequents.

(Crouch & van Genabith 1999: 131)

But (natural deduction) derivations are representations of
proofs, not the proofs themselves.

Gentzen calculus, labelled and unlabelled natural de-
ductions, proof nets, categorical calculus, etc. are all of
repute, all have their respective advantages and disad-
vantages, and are all notations for the same theory.

(Corbalán & Morrill 2016: fn. 4), emphasis mine

15/40

What is a proof?

Node orderings are defined over derivations
A derivation is a tree-like structure of sequents […] Rep-
resent derivations D as triples 〈S, >S, $〉 where S is the
set of points in the tree, >S is a transitive , asymmetric
ordering over them, and $ is a function mapping the
points onto their corresponding sequents.

(Crouch & van Genabith 1999: 131)

But (natural deduction) derivations are representations of
proofs, not the proofs themselves.

Gentzen calculus, labelled and unlabelled natural de-
ductions, proof nets, categorical calculus, etc. are all of
repute, all have their respective advantages and disad-
vantages, and are all notations for the same theory.

(Corbalán & Morrill 2016: fn. 4), emphasis mine15/40

Sequent calculus

G ` G H(F ` H(F
G,G((H(F) ` H(F

(L F ` F
G,G((H(F), (H(F)(F ` F

(L

G((H(F), (H(F)(F ` G(F
(R F ` F

(G(F)(F,G((H(F), (H(F)(F ` F
(L

Surface
scope

G ` G
H ` H F ` F
H,H(F ` F (L

G,H,G((H(F) ` F
(L

H,G((H(F) ` G(F
(R F ` F

H, (G(F)(F,G((H(F) ` F
(L

(G(F)(F,G((H(F) ` H(F
(R F ` F

(G(F)(F,G((H(F), (H(F)(F ` F
(L

Inverse
scope

16/40

Proof nets I (Moot 2002: Chapter 5)

F+(−

F−(+

F+H−

(−

(−

F−H+

G+

(−

F−(+

F+G−

Surface
scope

F+(−

F−(+

F+H−

(−

(−

F−H+

G+

(−

F−(+

F+G−

Inverse
scope

17/40

Proof nets II (Adapted from Andrews 2010)

F+

F−

(−(+

F+

F−

(−(+

F+

F−

(−

(−G+

H+

H−

G−

F+

F−

(−(+

F+

F−

(−(+

F+

F−

(−

(−G+

H+

G−

H−

Surface scope Inverse scope 18/40

• The point is not that an equivalent notion of node
ordering couldn’t be defined for these other proof formats.
(In face, I’ve actually done this in adapting the definition
that Crouch & van Genabith (1999) give for a slightly
different proof format.)

• The point is that if we have properly linguistic constraint
on the form of derivations, we’re not doing logic any more.

Rather than make such nonlogical restrictions on our
proof theory, I turn to an alternative approach

(Carpenter 1998: 203)

19/40

• The point is not that an equivalent notion of node
ordering couldn’t be defined for these other proof formats.
(In face, I’ve actually done this in adapting the definition
that Crouch & van Genabith (1999) give for a slightly
different proof format.)

• The point is that if we have properly linguistic constraint
on the form of derivations, we’re not doing logic any more.

Rather than make such nonlogical restrictions on our
proof theory, I turn to an alternative approach

(Carpenter 1998: 203)

19/40

• The point is not that an equivalent notion of node
ordering couldn’t be defined for these other proof formats.
(In face, I’ve actually done this in adapting the definition
that Crouch & van Genabith (1999) give for a slightly
different proof format.)

• The point is that if we have properly linguistic constraint
on the form of derivations, we’re not doing logic any more.

Rather than make such nonlogical restrictions on our
proof theory, I turn to an alternative approach

(Carpenter 1998: 203)

19/40

My proposal

The name of the game

• Assign linear logic formula to lexical items such that all
and only the desired interpretations have a corresponding
proof.

• I.e., not filtering out proofs by non-logical means.

20/40

The name of the game

• Assign linear logic formula to lexical items such that all
and only the desired interpretations have a corresponding
proof.

• I.e., not filtering out proofs by non-logical means.

20/40

In a bit more detail

Expand the fragment of linear logic used such that

• f-structure nodes are linear logic predicates (not
formulae),

• the arguments to those predicates ‘keep track’ of the
order of application of quantifiers, and

• set things up so that only by applying quantifiers in the
desired order can a valid proof be constructed.

21/40

In a bit more detail

Expand the fragment of linear logic used such that

• f-structure nodes are linear logic predicates (not
formulae),

• the arguments to those predicates ‘keep track’ of the
order of application of quantifiers, and

• set things up so that only by applying quantifiers in the
desired order can a valid proof be constructed.

21/40

In a bit more detail

Expand the fragment of linear logic used such that

• f-structure nodes are linear logic predicates (not
formulae),

• the arguments to those predicates ‘keep track’ of the
order of application of quantifiers,

and
• set things up so that only by applying quantifiers in the
desired order can a valid proof be constructed.

21/40

In a bit more detail

Expand the fragment of linear logic used such that

• f-structure nodes are linear logic predicates (not
formulae),

• the arguments to those predicates ‘keep track’ of the
order of application of quantifiers, and

• set things up so that only by applying quantifiers in the
desired order can a valid proof be constructed.

21/40

Provenance

The approach is inspired by work in Abstract Categorial
Grammar (Pogodalla & Pompigne 2012, Kanazawa 2015).

A crude characterisation would be that glue semantics
is like categorial grammar and its semantics, but with-
out the categorial grammar.

(Crouch & van Genabith 2000: 91)

22/40

Provenance

The approach is inspired by work in Abstract Categorial
Grammar (Pogodalla & Pompigne 2012, Kanazawa 2015).

A crude characterisation would be that glue semantics
is like categorial grammar and its semantics, but with-
out the categorial grammar.

(Crouch & van Genabith 2000: 91)

22/40

Linear logic fragment

Given a set P of predicates (f-structure nodes) and a set V of
variables, the fragment of linear logic used is:

n ::= V | 0 | sn (terms)
φ, ψ ::= Pn | φ(ψ | ∀V.φ (formulae)

(where s is the successor function)

23/40

Linear logic fragment

Given a set P of predicates (f-structure nodes) and a set V of
variables, the fragment of linear logic used is:

n ::= V | 0 | sn (terms)
φ, ψ ::= Pn | φ(ψ | ∀V.φ (formulae)

(where s is the successor function)

23/40

Linear logic fragment

Given a set P of predicates (f-structure nodes) and a set V of
variables, the fragment of linear logic used is:

n ::= V | 0 | sn (terms)
φ, ψ ::= Pn | φ(ψ | ∀V.φ (formulae)

(where s is the successor function)

23/40

Our German example

bewacht guard′ : ∀i.∀j.(↑ subj) i(((↑ obj) j(↑j)
det det′ : ∀i.[(spec ↑) 0(↑0](

([(spec ↑)(s i)(%A (s i)](%A i)

%A = (gf* ↑)

⇓
bewacht guard′ : ∀i.∀j.Gi((Hj(Fj)

ein Polizist λP.∃x.officer′x ∧ Px : ∀i.(G(si)(F(si))(Fi
jeden Ausgang λQ.∀y.exit′y → Qy : ∀i.(H(si)(F(si))(Fi

%A := F

24/40

Our German example

bewacht guard′ : ∀i.∀j.(↑ subj) i(((↑ obj) j(↑j)
det det′ : ∀i.[(spec ↑) 0(↑0](

([(spec ↑)(s i)(%A (s i)](%A i)

%A = (gf* ↑)

⇓
bewacht guard′ : ∀i.∀j.Gi((Hj(Fj)

ein Polizist λP.∃x.officer′x ∧ Px : ∀i.(G(si)(F(si))(Fi
jeden Ausgang λQ.∀y.exit′y → Qy : ∀i.(H(si)(F(si))(Fi

%A := F

24/40

How it works

• There’s a ‘counter’.

• Applying a quantifier reduces the counter by
one: [(spec ↑)(s i)(%A (s i)](%A i

• So if Q1 immediately outscopes Q2, then you have to set
the counter for Q1 to one lower than for Q2.

• So to get the inverse scope reading, you’d have to set the
counter for the subject position one higher than for the
object position.

• But the lexical entry for the verb guarantees that if you do
that, no proof can be constructed:
(↑ subj) i(((↑ obj) j(↑ j)

25/40

How it works

• There’s a ‘counter’.
• Applying a quantifier reduces the counter by
one: [(spec ↑)(s i)(%A (s i)](%A i

• So if Q1 immediately outscopes Q2, then you have to set
the counter for Q1 to one lower than for Q2.

• So to get the inverse scope reading, you’d have to set the
counter for the subject position one higher than for the
object position.

• But the lexical entry for the verb guarantees that if you do
that, no proof can be constructed:
(↑ subj) i(((↑ obj) j(↑ j)

25/40

How it works

• There’s a ‘counter’.
• Applying a quantifier reduces the counter by
one: [(spec ↑)(s i)(%A (s i)](%A i

• So if Q1 immediately outscopes Q2, then you have to set
the counter for Q1 to one lower than for Q2.

• So to get the inverse scope reading, you’d have to set the
counter for the subject position one higher than for the
object position.

• But the lexical entry for the verb guarantees that if you do
that, no proof can be constructed:
(↑ subj) i(((↑ obj) j(↑ j)

25/40

How it works

• There’s a ‘counter’.
• Applying a quantifier reduces the counter by
one: [(spec ↑)(s i)(%A (s i)](%A i

• So if Q1 immediately outscopes Q2, then you have to set
the counter for Q1 to one lower than for Q2.

• So to get the inverse scope reading, you’d have to set the
counter for the subject position one higher than for the
object position.

• But the lexical entry for the verb guarantees that if you do
that, no proof can be constructed:
(↑ subj) i(((↑ obj) j(↑ j)

25/40

How it works

• There’s a ‘counter’.
• Applying a quantifier reduces the counter by
one: [(spec ↑)(s i)(%A (s i)](%A i

• So if Q1 immediately outscopes Q2, then you have to set
the counter for Q1 to one lower than for Q2.

• So to get the inverse scope reading, you’d have to set the
counter for the subject position one higher than for the
object position.

• But the lexical entry for the verb guarantees that if you do
that, no proof can be constructed:
(↑ subj) i(((↑ obj) j(↑ j)

25/40

The inverse scope reading is underivable

ein Polizist
⇓

(G2(F2)(F1

[H1]2
[G2]1

guard′ :
∀i.∀j.Gi((Hj(Fj)
G2((H1(F1) ∀E × 2

H1(F1
F1

G2(F1 1
∗

back

26/40

The surface scope reading is derivable

Ein Polizist
⇓

(G1(F1)(F0

jeden Ausgang
⇓

(H2(F2)(F1
[G1]1

guard′ :
∀i.∀j.Gi((Hj(Fj)
G1((H2(F2) ∀E × 2

H2(F2
F1

G1(F1 1

F0

27/40

The relevance of topicalization

(2) Ein Polizist bewacht jeden Ausgang.
(6) Jeden Ausgang bewacht ein Polizist.

(2) (6)
pred ‘guard’
topic [“Ein Polizist”]
subj
obj [“jeden Ausgang”]




pred ‘guard’
topic [“jeden Ausgang”]
subj [“Ein Polizist”]
obj



(6), unlike (2), has both the surface scope and inverse scope
readings.

28/40

Conditional meaning constructors

It seems that we want something like this:

bewacht V
(↑ pred) = ‘guard’
(↑ subj) = (↑ topic) ⇒ guard′ :

∀i.∀j.(↑ subj) i(((↑ obj) j(↑ (f i j))

(↑ subj) 6= (↑ topic) ⇒ guard′ :
∀i.∀j.∀k.(↑ subj) i(((↑ obj) j(↑ k)

But this is an abuse of notation, since meaning constructors
aren’t defining equations.

29/40

A possible implementation

bewacht V
(↑ pred) = ‘guard’
guard′ : ∀i.∀j.(↑ subj) i(((↑ obj) j(↑ (f i j))
(@reset)

where

reset := (↑ subj) 6= (↑ topic)
λp.p : ∀i.∀j.↑i(↑j

30/40

• If the subject is the topic, calling reset will cause failure.
So, the scope is frozen.

• If the subject is not the topic, then reset may or may not
be called. If it is, then both scope ordering are possible
since the counter can be changed.

31/40

• If the subject is the topic, calling reset will cause failure.
So, the scope is frozen.

• If the subject is not the topic, then reset may or may not
be called. If it is, then both scope ordering are possible
since the counter can be changed.

31/40

Deriving the inverse scope reading with reset

Remember this derivation?

With reset it can be completed.

jeden Ausgang
⇓

(H1(F1)(F0

ein Polizist
⇓

(G2(F2)(F1

[H1]2, [G2]1, guard′....
F1

∀i.∀j.Fi(Fj
F1(F2 ∀E × 2

F2
G2(F2 1

F1
H1(F1 2

F0

32/40

Deriving the inverse scope reading with reset

Remember this derivation? With reset it can be completed.

jeden Ausgang
⇓

(H1(F1)(F0

ein Polizist
⇓

(G2(F2)(F1

[H1]2, [G2]1, guard′....
F1

∀i.∀j.Fi(Fj
F1(F2 ∀E × 2

F2
G2(F2 1

F1
H1(F1 2

F0

32/40

The English double object construction

(7) Most teachers gave a student every grade.

most 〉〉 a 〉〉 every a 〉〉 most 〉〉 every every 〉〉 most 〉〉 a
most 〉〉 every 〉〉 a a 〉〉 every 〉〉 most every 〉〉 a 〉〉 most

(Bruening 2001)

The only way for the secondary object not to take narrowest
scope is for both objects to scope over the subject (in surface
order).

gave
give′ : ∀i.∀j.∀k.(↑ subj) i(((↑ obj) j(((↑ objθ) k(↑(fijk)))

where f is the function such that fijk =

{
i if j < k < i
k otherwise

33/40

The English double object construction

(7) Most teachers gave a student every grade.

most 〉〉 a 〉〉 every a 〉〉 most 〉〉 every every 〉〉 most 〉〉 a
most 〉〉 every 〉〉 a a 〉〉 every 〉〉 most every 〉〉 a 〉〉 most

(Bruening 2001)

The only way for the secondary object not to take narrowest
scope is for both objects to scope over the subject (in surface
order).

gave
give′ : ∀i.∀j.∀k.(↑ subj) i(((↑ obj) j(((↑ objθ) k(↑(fijk)))

where f is the function such that fijk =

{
i if j < k < i
k otherwise

33/40

The English double object construction

(7) Most teachers gave a student every grade.

most 〉〉 a 〉〉 every a 〉〉 most 〉〉 every every 〉〉 most 〉〉 a
most 〉〉 every 〉〉 a a 〉〉 every 〉〉 most every 〉〉 a 〉〉 most

(Bruening 2001)

The only way for the secondary object not to take narrowest
scope is for both objects to scope over the subject (in surface
order).

gave
give′ : ∀i.∀j.∀k.(↑ subj) i(((↑ obj) j(((↑ objθ) k(↑(fijk)))

where f is the function such that fijk =

{
i if j < k < i
k otherwise

33/40

Reflections

Features on this account

Scope rigidity because

• quantifiers are not modifiers on the linear logic side, and
• verb forms can specify which argument takes narrowest
scope.

This has been stated as particular to verb lexical entries, but of
course we’d want to generalize to every transitive/ditransitive
verb in the language.

34/40

Features on this account

Scope rigidity because

• quantifiers are not modifiers on the linear logic side

, and
• verb forms can specify which argument takes narrowest
scope.

This has been stated as particular to verb lexical entries, but of
course we’d want to generalize to every transitive/ditransitive
verb in the language.

34/40

Features on this account

Scope rigidity because

• quantifiers are not modifiers on the linear logic side, and
• verb forms can specify which argument takes narrowest
scope.

This has been stated as particular to verb lexical entries, but of
course we’d want to generalize to every transitive/ditransitive
verb in the language.

34/40

Features on this account

Scope rigidity because

• quantifiers are not modifiers on the linear logic side, and
• verb forms can specify which argument takes narrowest
scope.

This has been stated as particular to verb lexical entries, but of
course we’d want to generalize to every transitive/ditransitive
verb in the language.

34/40

Possible alternatives

• Provide f-/s-structure with more internal structure (cf.
Andrews (2018) on the relative scope of adjectives).

• Read linear logic formulae off c-structure instead.

I can’t seen either of these options being popular.

35/40

Possible alternatives

• Provide f-/s-structure with more internal structure (cf.
Andrews (2018) on the relative scope of adjectives).

• Read linear logic formulae off c-structure instead.

I can’t seen either of these options being popular.

35/40

Possible alternatives

• Provide f-/s-structure with more internal structure (cf.
Andrews (2018) on the relative scope of adjectives).

• Read linear logic formulae off c-structure instead.

I can’t seen either of these options being popular.

35/40

Possible alternatives

• Provide f-/s-structure with more internal structure (cf.
Andrews (2018) on the relative scope of adjectives).

• Read linear logic formulae off c-structure instead.

I can’t seen either of these options being popular.

35/40

Thanks!

This research is funded by the

36/40

References

Andrews, Avery D. 2010. Propositional glue and the projection
architecture of LFG. Linguistics and Philosophy 33. 141–170.
https://doi.org/10.1007/s10988-010-9079-9.

Andrews, Avery D. 2018. Sets, heads, and spreading in LFG.
Journal of Language Modelling 6(1). 131–174.
https://doi.org/10.15398/jlm.v6i1.175.

Bruening, Benjamin. 2001. QR obeys superiority: frozen scope
and ACD. Linguistic Inquiry 32(2). 233–273.

Carpenter, Bob. 1998. Type-logical semantics. Cambridge, MA:
MIT Press.

37/40

https://doi.org/10.1007/s10988-010-9079-9
https://doi.org/10.15398/jlm.v6i1.175

Corbalán, María Inés & Glyn Morrill. 2016. Overtly anaphoric
control in type logical grammar. In Annie Foret, Glyn Morrill,
Reinhard Muskens, Rainer Osswald & Sylvain Pogodalla
(eds.), Formal grammar: FG 2015, FG 2016 (Lecture Notes in
Computer Science 9804), 183–199. Berlin, Heidelberg:
Springer.
https://doi.org/10.1007/978-3-662-53042-9_11.

Crouch, Richard & Josef van Genabith. 1999. Context change,
underspecification and the structure of Glue language
derivations. In Mary Dalrymple (ed.), Semantics and syntax in
Lexical Functional Grammar: The resource logic approach,
117–189. Cambridge, MA: MIT Press.

38/40

https://doi.org/10.1007/978-3-662-53042-9_11

Crouch, Richard & Josef van Genabith. 2000. Linear logic for
linguists. ESSLLI 2000 course notes. Archived 2006-10-19 in
the Internet Archive at http:
//web.archive.org/web/20061019004949/http:
//www2.parc.com/istl/members/crouch/esslli00_
notes.pdf.

Kanazawa, Makoto. 2015. Syntactic features for regular
constraints and an approximation of directional slashes in
abstract categorial grammars. In Yusuke Kubota &
Robert Levine (eds.), Empirical advances in categorial
grammar: Proceedings of the ESSLLI 2015 workshop (CG 2015),
34–70. http://www.u.tsukuba.ac.jp/~kubota.
yusuke.fn/cg2015-proceedings.pdf. Last accessed
2019-02-12.

39/40

http://web.archive.org/web/20061019004949/http://www2.parc.com/istl/members/crouch/esslli00_notes.pdf
http://web.archive.org/web/20061019004949/http://www2.parc.com/istl/members/crouch/esslli00_notes.pdf
http://web.archive.org/web/20061019004949/http://www2.parc.com/istl/members/crouch/esslli00_notes.pdf
http://web.archive.org/web/20061019004949/http://www2.parc.com/istl/members/crouch/esslli00_notes.pdf
http://www.u.tsukuba.ac.jp/~kubota.yusuke.fn/cg2015-proceedings.pdf
http://www.u.tsukuba.ac.jp/~kubota.yusuke.fn/cg2015-proceedings.pdf

Moot, Richard. 2002. Proof nets for linguistic analysis.
University of Utrecht dissertation.

Pogodalla, Sylvain & Florent Pompigne. 2012. Controlling
extraction in abstract categorial grammars. In
Philippe de Groote & Mark-Jan Nederhof (eds.), Formal
grammar: FG 2010, FG 2011 (Lecture Notes in Computer
Science 7395), 162–177. Berlin, Heidelberg: Springer.
https://doi.org/10.1007/978-3-642-32024-8_11.

40/40

https://doi.org/10.1007/978-3-642-32024-8_11

	Scope (non-)ambiguity in LFG+Glue
	Background
	Scope rigidity—what this talk is about

	A previous proposal
	Node orderings
	Problems with the node ordering approach

	My proposal
	Using a counter
	Re-enabling scope flexibility

	Reflections
	Appendix
	References

