Quantificational subordination as anaphora to
a function

Matthew Gotham
University of Oxford

24th Conference on Formal Grammar, University of Latvia
11 August 2019

1/38

Background

2/38

Background

Outline of the proposal

2/38

Background
Outline of the proposal

Examples
Refset anaphora

Telescoping

2/38

Background
Outline of the proposal

Examples
Refset anaphora

Telescoping

Discussion
Comparison with TTS

Conclusion

2/38

Background

Quantificational subordination (QS)

(1) If you give every child a present, some child will open it.
(Ranta 1994)

(2) Every student bought a book. Most of them read it.

(3) Every player chooses a pawn. He puts it on square one.
(Groenendijk & Stokhof 1991)

Examples like (3) are often called ‘telescoping’.

3/38

Pronouns inaccessible in first-generation dynamic semantics

E.g. DRT:

If you give every child a present, some child will open it.

y

zZUu

child x

present y
you give Xy

child z
zopens u
u=?

4/38

Pronouns inaccessible in first-generation dynamic semantics

Every player chooses a pawn. He puts it on square one.

zu
X y
= | pawny
layer
prayerx X chooses y

Z puts u on square one
z=?
u=?

5/38

Second-generation dynamic semantics

Via a generalization to using sets of assignments:

[every* player chooses @¥ pawn] =

{(F,H)|3G: (VfeF:39€G:frxg&VgeG:If €F:fryQ)
& {9(x) | g € G} = [player]
& (Vge G:3h:g=y h&h(y) € [pawn] & (h(x), h(y)) € [choose])
&H={h|3g € G:gryh&h(y) € [pawn] & (h(x), h(y)) € [choose]}

6/38

Second-generation dynamic semantics

Via a generalization to using sets of assignments:

[every* player chooses @¥ pawn] =

{(F,H)|3G: (VfeF:39€G:frxg&VgeG:If €F:fryQ)
& {9(x) | g € G} = [player]
& (Vge G:3h:g=y h&h(y) € [pawn] & (h(x), h(y)) € [choose])
&H={h|3g € G:gryh&h(y) € [pawn] & (h(x), h(y)) € [choose]}

- Le, {h(x) | h € H} is the set of players, and for every
h € H,h(y) is a pawn chosen by h(x). H therefore encodes
the necessary dependency between pawns and players.

6/38

Second-generation dynamic semantics

Via a generalization to using sets of assignments:

[every* player chooses @¥ pawn] =

{(F,H)|3G: (VfeF:39€G:frxg&VgeG:If €F:fryQ)
& {9(x) | g € G} = [player]
& (Vge G:3h:g=y h&h(y) € [pawn] & (h(x), h(y)) € [choose])
&H={h|3g € G:gryh&h(y) € [pawn] & (h(x), h(y)) € [choose]}

- Le, {h(x) | h € H} is the set of players, and for every
h € H,h(y) is a pawn chosen by h(x). H therefore encodes
the necessary dependency between pawns and players.

- It's quite a complex and roudabout way to get to that
dependency, though.

6/38

Type-theoretical semantics (TTS) suggests an answer

7/38

Type-theoretical semantics (TTS) suggests an answer

- Propositions-as-types principle

7/38

Type-theoretical semantics (TTS) suggests an answer

- Propositions-as-types principle
- (Xx : A)B—the type of ordered pairs (a, b), where a : A and
b: Bla/x]

7/38

Type-theoretical semantics (TTS) suggests an answer

- Propositions-as-types principle

- (Xx : A)B—the type of ordered pairs (a, b), where a : A and
b: Bla/x]

- (Mx : A)B—the type of functions with domain A such that,
forany a: A f(a): Bla/x]

7/38

Type-theoretical semantics (TTS) suggests an answer

- Propositions-as-types principle

- (Xx : A)B—the type of ordered pairs (a, b), where a : A and
b: Bla/x]

- (Mx : A)B—the type of functions with domain A such that,
forany a: A f(a): Bla/x]

(1) If you give every child a present, some child will open it.

(Mf : (Mu : (Xx : e) CHILD(X))
(Zv : (Xy : e) PRESENT(Y)) GIVE(you', m(v), m(u)))
(Xw : (Xz : e) CHILD(Z)) OPEN(m1(w), m1(m1(f (w))))

7/38

Using the function

(Mf = (Mu : (Xx : e) CHILD(X))
(Zv : (Xy : e) PRESENT(Y)) GIVE(you', m(v), m(u)))
(Xw : (X2 : e) CHILD(Z)) OPEN(m1(w), m1(m1(f (w))))

8/38

Using the function

(Mf = (Mu : (Xx : e) CHILD(X))
(Zv : (Xy : e) PRESENT(Y)) GIVE(you', m(v), m(u)))
(Xw : (X2 : e) CHILD(Z)) OPEN(m1(w), m1(m1(f (w))))

- you give every child a present ~ a function f mapping
every child to a present you give him/her.

- some child will open it ~ a child z and a proof that you
open f(2).

8/38

Using the function

(Mf = (Mu : (Xx : e) CHILD(X))
(Zv : (Xy : e) PRESENT(Y)) GIVE(you', m(v), m(u)))
(Xw : (X2 : e) CHILD(Z)) OPEN(m1(w), m1(m1(f (w))))

- you give every child a present ~ a function f mapping
every child to a present you give him/her.

- some child will open it ~ a child z and a proof that you
open f(2).

- The fact that the first sentence expresses a function
makes this kind of dependency possible.

8/38

Using the function

(Mf = (Mu : (Xx : e) CHILD(X))
(Zv : (Xy : e) PRESENT(Y)) GIVE(you', m(v), m(u)))
(Xw : (X2 : e) CHILD(Z)) OPEN(m1(w), m1(m1(f (w))))

- you give every child a present ~ a function f mapping
every child to a present you give him/her.
- some child will open it ~ a child z and a proof that you
open f(2).
- The fact that the first sentence expresses a function
makes this kind of dependency possible.
- BUT it is actually crucial that an appropriate argument to
the function is overtly present in the second sentence. 8/38

(3) Every player chooses a pawn. He puts it on square one.

Ranta (1994: 73):
the only way to interpret the text [...] is by treating the
pronoun ‘he” as an abbreviation of ‘every player’

Obviously, this ‘abbreviation’ strategy is unsatisfactory.

9/38

(3) Every player chooses a pawn. He puts it on square one.

Ranta (1994: 73):
the only way to interpret the text [...] is by treating the

pronoun ‘he” as an abbreviation of ‘every player’

Obviously, this ‘abbreviation’ strategy is unsatisfactory.
(2) Every student bought a book. Most of them read it.

No mechanism for plural anaphora (yet).

9/38

Outline of the proposal

Witness semantics (Gotham 2018)

Idea: take the ideas of TTS (dependent pairs/functions) and
apply them in (sort of) simple type theory.

10/38

Witness semantics (Gotham 2018)

Idea: take the ideas of TTS (dependent pairs/functions) and
apply them in (sort of) simple type theory.

(1) If you give every child a present, some child will open it.

3f .vg. (vx.child’x — (present’(gx)o A give'(you’, (gX)o, X, (9X)1)))
— (child'(fg)o A open’((f9)o, (9(f9)o)o, (f9)1))

f:(e—sexv)—exv g:e—exv X:e

- We'll use events (type v) as the model-theoretic analogs
of proofs objecs in TTS.

- (Notation: we have .oy1 for left/right projections, i.e.
(a,b)o =aand (a,b); =b.)

10/38

Basic ideas

- Sentences denote relations, not between verifying
assignments, but actual verifying things: entities, events
and structures built up from them.

11/38

Basic ideas

- Sentences denote relations, not between verifying
assignments, but actual verifying things: entities, events
and structures built up from them.

- This requires the use of (parametric) polymorphism in
type annotations, given by greek letters in what follows.

11/38

Basic ideas

- Sentences denote relations, not between verifying
assignments, but actual verifying things: entities, events
and structures built up from them.

- This requires the use of (parametric) polymorphism in
type annotations, given by greek letters in what follows.

- Pronouns denote functions from input contexts to
entities/sets.

11/38

Basic ideas

- Sentences denote relations, not between verifying
assignments, but actual verifying things: entities, events
and structures built up from them.

- This requires the use of (parametric) polymorphism in
type annotations, given by greek letters in what follows.

- Pronouns denote functions from input contexts to
entities/sets.

- Existential closure at the text level.

11/38

Extension to cover QS

- The version of Gotham 2018 doesn’t do any better than TTS
for QS.

12/38

Extension to cover QS

- The version of Gotham 2018 doesn’t do any better than TTS
for QS.
- This paper:
- Revised lexical entries for quantificational determiners: a
sentence headed by one denotes a function.
- The domain of that function is the refset.
- Both the function itself and its domain are targets for

anaphora.
- A mechanism for accessing the range of the function to
account for telescoping.

12/38

Extension to cover QS

- The version of Gotham 2018 doesn’t do any better than TTS
for QS.
- This paper:
- Revised lexical entries for quantificational determiners: a
sentence headed by one denotes a function.
- The domain of that function is the refset.
- Both the function itself and its domain are targets for

anaphora.
- A mechanism for accessing the range of the function to
account for telescoping.

- Also: an accompanying syntactic theory.

12/38

Syntactic theory

Categories:
A,B = S|Ssr|Nyr|NP|NP,|NPL|NPL, |A/B|A\B|AB
where

o7 = 1le|t|lo=T1|oxT

Type map:

13/38

Syntactic theory

Combinatory rules:

f:B/A a:A f:A/B
fa: B - Ag.\c.f(ge) : AC/BC
f:A\B
Ag.Ac.f(ge) : AS\B®
a:A f:B\A f:(A/B)¢
fa:B ° AbACfcb : AS/B
f:(A\B)"

X
Ab.\c.fcb : AC\B

14/38

Partial type theory

For any typeso,7randterm T : 0 — T,

domT := As?.Ts # "

where

«2 is stipulated for any base type 3

and

*O'XT = (*0"*7')

*°77 := the unique f :: ¢ — 7 such that for any s :: o, fs = %"

15/38

Mini lexicon

input (left context), output (witness)

Q ~» APATeT \yeraxen St yja 3ex8 piyg A Vug(i, ug)us
: (Sa,exp/(Saxe,8\NP))/Na,e

det ~» APt yyemaxe=B-t yja zfe=8 qomf C (Pi)
A det’(Pi)(domf)
A VXE.domfx — Vx(i, x)(fx)

: (Sae—8/(Saxe,8\NP))/Nae
booR ~ Ai*.book’ : Nge
bought ~~ AD(E7aV=D=8=9=t yye D€ Ai® Ae¥.buy/(x, y, e))
- (58,7 \NP)/(Sg,7/(Sa,v \NP))

16/38

he,it ~» AGE—eAVEaB= N2 V(gi)i : (Sa./(Sas\NP))"P
of them ~» AG* €T\ .Gi : (Nge)"™
;e APATATE NGB N A0P X7 piog A q(i, 00)0
: (Sa,8x~/Saxp)\Sa,p
[close] := Ap' 77t 3a%.pxa : S/S1.4

where * : 1

17/38

Examples

(2) Every student bought a book; most of them read it.

18/38

(2) Every student bought a book; most of them read it.

Resolved lexical entries:

18/38

(2) Every student bought a book; most of them read it.

Resolved lexical entries:
every ~)\P1ﬁeﬁt./\vea1xe%exvat./\lﬂ)\Jceﬁexv‘domf — (PI)
A VXE.domfx — Vx(i, X)(fX)
: (51,e—>exv/(51xe,exv\NP))/NLe
student ~ Ai'.student’ : Nq booRk ~ Ai"™*€.book’ : Niyee
bought ~
)\D(e—>(1><e)><e—>v—>t)—>1><e—>e><v—>t.)\Xe'D()\ye.>\i(1xe)xe‘)\ev.buy/(x y e))
: (S1xe,exv\NP)/(S1xe,exv/(S(1xe)xe,y \NP))
q ~)\P1><e—>e—>t')\ve—>(1><e)><e—>v—>t‘)\’-1xe')\uexv'Pl-uO A V(Uo)o(i, uo)u1
: (51><e,e><v/(5(1><e)xe,v\NP))/NTX&E
)\p1—>(e—>e><v)—>t‘>\q1><(e—>exv)—>(e—>v)—>t./\,'1.)\O(e—>e><v)><(e—>v)'pioo A C](i 00)01

18/38
: (51,(eae><v)><(eev)/51x(eaexv),eav)\sh(eaexv) /

First sentence derivation

a book
bought (5../(5. NP/ N
(s..\NP)/(s../(s..\NP)) (5../(5.ANP))
S1><e,e><V\NFJ
every d
(S../(s..\NP))/N... stuN"?ni bought a book
S../(S..\NP) S..\NP ;
51e—vexy Z(s./S.)\s..
<
S../S...
G

(SW)NPL,,,/(SM)NPL,,,

((51 (e%eXV)X(e—}V))NPLWX(EHEXV))NP(W><(eaexv))xe/((sm)NPLm)NPM

G

19/38

(2) Every student bought a book; most of them read it.

20/38

(2) Every student bought a book; most of them read it.

Resolved lexical entries:

20/38

(2) Every student bought a book; most of them read it.

Resolved lexical entries:
most ~~
AP! ><(e—>e><v)—>e—>t.)\ve—>(1><(e—>e><v))—>v—>t_)\l'1><(e—>e><v)./\fe—>v.d0mf C (Pi)
A most’(Pi)(domf)
A VXE.domfx — Vx(i, x)(fX)
: (51><(e—>e><v),e—>v/(5(1><(e—>e><v))><e,v\NP))/N1><(e—>e><v),e
ofthem —)\61><(e—>e><v)—>e—>t')\l-1><(e—>e><v).Gl- : (N1><(e—>e><v),e)NPL1X(e_)exv)
read ~»
)\D(ea(1x(eaexv))xeevat)aﬁ><(e%exv))xeavat.)\xe.D(Ay')\i‘)\e'read/(x7 V. e))

: (5(1><(e—>e><v))xe,v\NP)/(S(1><(e—>e><v))><e,v/(5(1><(e—>e><v))><e,v\NP))
itw)\g(1x(eaexv))xeae_/\veaﬁx(eaexv))xeﬁvat.)\iﬁx(eaexv))xe'v(gi)i

: (5(1><(e—>e><v))><e,v/(5(1><(e—>e><v))><e,v\N P))NP(WX(QHQXV»Xe
20/38

Second sentence derivation

read

(S..\NP)/(S../(s..\NP)) . -
(S..\NP)™ /(S.../(S.ANP))™ = (S../(S..\NP))""

NP
(S1><(eae><v),v\N P) (1x(eexv))xe

most
(5../(s.\NP_))/N.. o ofthem
((5_"/(5_”\,\”3___)))NPL‘,_/(N“_)NPL,H (N.”)NPLW N
(CR/(STNR)) R
(5..)7/(5..\NP) G read it
((S.)VFE NP /(s \NP)NP-- (5. \NP)NP-- §

NPL NP
((S1><(e—>e><v),e—>v) 1x(e—vexv) JNP(1x (e—exv))xe

21/38

every student bought a book; most of them read it

((S.”)NPLM)NPM}((SM)NPLM)NPM ((S)NPL)NP

>
((51,(e—>exv)x(e—>v))NPLM(E%W))NP(WX(HQXV”XQ
[close] every student bought a book;
S/, - most of them read it
SNPL“‘/(S']7__.)NPL“‘
(SVPL-) NP/ ((Sy.. VPR VP G ((51’“_)N'PL.4.)NP.4.

(SNPLTX(GHEXV))NP(1X(€~>€><V))><€ >

22/38

Interpretation

With pronouns unresolved:
Ag(Px(evexv))xe—e 3 gix(eexv)sest
Jwe=exv)x(e=Y) dom(Wy) = student’
A (¥x€.dom(Wo)x — (book(Wox)o A buy’(x, Wox)))
A dom(Ws) C G(*, Wo) A most!(G(x, Wo))(dom(WW1))
A Yy€.dom(Wq)y — read’(y, g((x, Wo),y), Wiy)

23/38

Interpretation

With pronouns unresolved:
Ag(Px(evexv))xe—e 3 gix(eexv)sest
Jwe=exv)x(e=Y) dom(Wy) = student’
A (¥x€.dom(Wo)x — (book(Wox)o A buy’(x, Wox)))
A dom(Ws) C G(*, Wo) A most!(G(x, Wo))(dom(WW1))
A Yy€.dom(Wq)y — read’(y, g((x, Wo),y), Wiy)

Resolution for it:

)\I'(T><(e—>e><v))><e'((i0)1 i1)0

23/38

Interpretation

With pronouns unresolved:
Ag(Px(evexv))xe—e 3 gix(eexv)sest
Jwe=exv)x(e=Y) dom(Wy) = student’
A (¥x€.dom(Wo)x — (book(Wox)o A buy’(x, Wox)))
A dom(Ws) C G(*, Wo) A most!(G(x, Wo))(dom(WW1))
A Yy€.dom(Wq)y — read’(y, g((x, Wo),y), Wiy)

Resolution for it:
)\I'(T><(e—>e><v))><e'((i0)1 i1)0
Resolution for of them:

)\j1><(eﬁe><v)'dom(j1)

23/38

JwEeexv)x(e=v) qom(Wy) = student’
A (¥x€.dom(Wo)x — (book(Wox)o A buy’(x, Wox)))
A dom(Wq) € dom(Wp) A most’(dom(Wp))(dom(W,))
AVYE.dom(W)y — read’(y, (Woy)o, Way)

24/38

JwEeexv)x(e=v) qom(Wy) = student’
A (¥x€.dom(Wo)x — (book(Wox)o A buy’(x, Wox)))
A dom(Wq) € dom(Wp) A most’(dom(Wp))(dom(W,))
A Vy€.dom(Wq)y — read’(y, (Woy)o, Way)

= Jfe7eV. 3P (Vx®.student’x — (book'(fx)o A buy’(x, fX)))
A P C student’ A most’student’P
AVYE.Py — 3e¥.read (y, (fv)o, €)

24/38

Natural resolution functions (NRFs)

The set of NRFs is the smallest set such that, for any types a, 3
and~yandanytermsfF::a— 8 —v,G: 8 —~vand H:a— b

- Aa%.ais an NRF

-« M@*B Aq is an NRF

-« M@B Asis an NRF

- AXexB=t \ag® 3bP X(a,b) is an NRF

- AXexB=t xpe Jaf X(a, b) is an NRF

- A8 domf is an NRF

- M8 AbP Ja®.domfa A b = fa is an NRF
- Aa®.G(Ha) is an NRF if G and H are NRFs
- Aa“.Fa(Ha) is an NRF if F and H are NRFs

A resolution function can select projections, sets of
projections, the domain or range of a function, and can apply
one thing it selects to another. 25/38

(3) Every player chooses a pawn. He puts it on square one.

26/38

(3)

Every player chooses a pawn. He puts it on square one.

- In order to deal with examples like (3), Roberts (1987)

posits the existence of a covert adverbial at the start of the
second sentence, meaning something like ‘in every case’.

26/38

(3)

Every player chooses a pawn. He puts it on square one.

- In order to deal with examples like (3), Roberts (1987)

posits the existence of a covert adverbial at the start of the
second sentence, meaning something like ‘in every case’.

- | adopt essentially the same strategy: a silent

subordinating operator that, when applied to the usual
sentential conjunction (;), gives an alternative,
subordinating, sentential conjunction ;syp

26/38

(3) Every player chooses a pawn. He puts it on square one.

- In order to deal with examples like (3), Roberts (1987)
posits the existence of a covert adverbial at the start of the
second sentence, meaning something like ‘in every case’.

- | adopt essentially the same strategy: a silent
subordinating operator that, when applied to the usual
sentential conjunction (;), gives an alternative,
subordinating, sentential conjunction ;syp

_Subw/\pa—>(/6’—>'y)—>t.)\qoz><6><(,8—>'y)—>6—>t.)\ia.)\o(,8—>'y)><(ﬁ—>6).pioo
A dom(0g) = dom(01) A ¥b?.dom(01)b — q(i, b, 00)(01b)

: (S%(ﬂ_w)><(5_>6)/Sa><,8><(B—)’y)ﬁ)\saﬁﬁ’y

26/38

(3) Every player chooses a pawn; he puts it on square one.

27/38

(3) Every player chooses a pawn; he puts it on square one.

Resolved lexical entries:

27/38

(3) Every player chooses a pawn; he puts it on square one.

Resolved lexical entries:
every ~» APIETE \yemTIxemexval AT AFEEY domf = (Pi)
A VXE.domfx — Vx(i, X)(fX)
: (S1,emexv/(S1xe,exv\NP))/N1e

player ~» Ai'.player’ : Nq pawn ~ \i'x¢

pawn’ : Nixee
chooses ~~
AD(e=(Ixe)xemvmti=ixemexvot \ye nyye \i(1X€)x€ Ne¥ choose!(x, y, e))
1 (S1xe,exv\NP)/(S1xe,exv/(S(ixe)xe, \NP))

q ~)\P1><e—>e—>t')\ve—>(1><e)><e—>v—>t‘)\’-1xe')\uexv'Pl-uO A V(Uo)o(i, uo)u1
: (S1xe,exv/(S(ixe)xe \NP))/Nixe,e
(eaexv)at‘/\q1xex(eaexv)evat./\,ﬂ'Ao(eeexv)x(eav)'pioo

Adomog = domoq A Vb®.domo1b — q(i, b, 09)(01b)
27/38

. T—
isub 7)‘p

: (S'I,(E‘*)eXV)X(eHV)/S'IXQX(E‘*)QXV),V)\SLQ—}@XV

First sentence derivation

every player
chooses a pawn
: isub
S1e—exv (51,(eae><v)><(eav)/51xex(eaexv),v)\sle—wxv

S1,(eae><v)><(eav)/sﬁ xex(e—exv),v

NP NP
(51,(e—>e><v)><(e—>v)) 1Xex(e_wxv)/(51><<~2><(e—>e><v),v) 1xex(esex)

)NPW><e><(e~>e><v))Npﬁxex(e%exv)/

((51,(e—>e><v)><(e—>v)

NP NP
((S,] ><e><(e—>e><v),v) 1><e><(e~>e><v)) Txex(e—exv)

28/38

(3) Every player chooses a pawn; he puts it on square one.

29/38

(3) Every player chooses a pawn; he puts it on square one.

Resolved lexical entries:

29/38

(3) Every player chooses a pawn; he puts it on square one.
Resolved lexical entries:
hew)\g1xex(e—>exv)—>e‘)\ve—>(1x(e—>exv))xe—>v—>t.>\i(1x(eﬁexv))xe‘v(gi)i

)NP'\XEX(E%eXV)

: (51><e><(eae><v),v/(s1><e><(eae><v),v\NP)
puts ... on square one ~

)\D(e—n xex(e—exv)—v—t)—1xex (e—>e><v)—>v—>t'
AXE.D (e A=) ze¥ put'(x,y, onsqT, e))

: (S1><e><(e—>e><v),v\NP)/(S1><e><(e—>e><v),v/(51xex(e—)exv),v\NP))
itw)\91xex(eaexv)ae')\veaOx(eaexv))xeevat)\imx(eaexv))xe.v(gi)i

)NP1><e><(e—>e><v)

: (51><e><(e—>e><v),v/(51 ><e><(e—>e><v),v\N P)

29/38

Second sentence derivation

puts...
(s..\NP)/
he B8NP it
(S../(s..\NP))""-- . (s..\NP)\P--/ :
(5.)"/(S.\NP) = (S./(S.ANP)Y (S./(S. NP
((SM)NP,.,)NP,../(SM\NP)NP,,. (SW\NP)NPW]

NP NP
((S1 ><e><(e—>e><v),v) erx(eaexv)) 1xex(e—exv)

30/38

every player
chooses a pawn;g,p,

: he puts it
S../S. . on square one
(S.“)NPH./(SM)NP.“ .
((5...)P NP /(5.)NP-)NP-.. ((5...)NP-NP-..

>

NP NP
((51,(e—>e><v)><(e—>v)) 1><e><(eae><v)) 1xex(e—exv)

: [close]

(SNP'\XEX(EHGXV))NPW><e><(e~>e><v)

31/38

Interpretation

With pronouns unresolved:
AgIxex(emexv)—e ypixex(eexv)ve
Jo(eexv)x(e=V) dom(og) = player’
A (Vx€.dom(00)x — (pawn’(0ox)o A choose’(x, 00x)))
A dom(07) = dom(0p)
AVYE.dom(01)y — put’(h(x,y,00),9(*,¥,00),0Nnsq1,01y)

32/38

Interpretation

With pronouns unresolved:
AgIxex(emexv)—e ypixex(eexv)ve
Jo(eexv)x(e=V) dom(og) = player’
A (Vx€.dom(00)x — (pawn’(0ox)o A choose’(x, 00x)))
A dom(07) = dom(0p)
AVYE.dom(01)y — put’(h(x,y,00),9(*,¥,00),0Nnsq1,01y)

Resolution for it:
)\Iﬂ><e><(e—>e><v)_((iw)1 (i1)0)0

32/38

Interpretation

With pronouns unresolved:

)\g1><e><(e—>e><v)—>e.)\h1><e><(e—>e><v)—>e.
Jo(eexv)x(e=V) dom(og) = player’
A (Vx€.dom(00)x — (pawn’(0ox)o A choose’(x, 00x)))
A dom(07) = dom(0p)
AVYE.dom(01)y — put’(h(x,y,00),9(*,¥,00),0Nnsq1,01y)

Resolution for it:
)\Iﬂ><e><(e—>e><v)_((iw)1 (i1)0)0
Resolution for he:

)\j1><e><(eae><v).(j1)0

32/38

Jo(e=exv)x(e=Y) domoy = player’
A (Vx©.dom(09)x — (pawn’(0ox)o A choose’(x, 0gx)))
A dom(07) = dom(0p)
AVY€.dom(o1)y — put'(y, (00y)o, 0onsql’, 01y)

33/38

Jo(e=exv)x(e=Y) domoy = player’
A (Vx©.dom(09)x — (pawn’(0ox)o A choose’(x, 0gx)))
A dom(07) = dom(0p)
AVY€.dom(o1)y — put'(y, (00y)o, 0onsql’, 01y)

= 7Y (vxC.player'’x — (pawn’(fx)o A choose’(x, fx)))
AVyE.player'y — 3e¥.put’(y, (fy)o, onsq?’, e)

33/38

Varieties of subordinating conjunction

(4) Every player chooses a pawn. He
always/usually/rarely’/...puts it on square one.

"Extra statements are required for non-monotone-increasing quantifiers

34/38

Varieties of subordinating conjunction

(4) Every player chooses a pawn. He
always/usually/rarely’/...puts it on square one.

Overt subordinating conjunction:
)\pa—>(ﬂ—w)—>t')\qa><ﬁ><(6—w)—>6—>t.)\,~a.)\O(B—w)x(ﬂ—%).pl-oo
A dom(01) € dom(0g) A det’(dom(0g))(dom(07))

AVbP.dom(01)b — q(i, b, 00)(01b)

Where det’ can be every’, most’, few'...

"Extra statements are required for non-monotone-increasing quantifiers

34/38

Discussion

(2) Every student bought a book. Most of them read it.

)\g(1><(e—>e><v))><e—>e')\G1><(e—>e><v)—>e—>t.

Jwle=exv)x(e=Y) dom(Wy) = student’
A (Wx€.dom(Wo)x — (book(Wox)o A buy’(x, Wox)))
A dom(Wq) C G(x, Wo) A most’(G(*, Wp))(dom(W))
A VYe.dom(Wq)y — read’(y, g((x, Wo),y), Wry)

35/38

(2) Every student bought a book. Most of them read it.

)\g(1><(e—>e><v))><e—>e')\G1><(e—>e><v)—>e—>t.
Jwle=exv)x(e=Y) dom(Wy) = student’

A (Wx€.dom(Wo)x — (book(Wox)o A buy’(x, Wox)))
A dom(Wq) C G(x, Wo) A most’(G(*, Wp))(dom(W))
A VYe.dom(Wq)y — read’(y, g((x, Wo),y), Wry)

Resolution for of them in this system:

A=) dom(jy) applied to (x, Wo) =5 dom(Wo) (= student)

21X (e—exv)—e—t X (e—exv)

35/38

(Bekki 2014, Tanaka, Nakano & Bekki 2014)

ACT (XS (Mv @ (XX : €)STUDENT(X))
(Xu - (2y : e)BOOK(y))BUY(V0, (U0)0))

Most(Ax.(Q; : ...)(c,f)(X))

)

(AX.(©; = ...)(¢, f)(x) x READ(X, (©; : ...)((c,f),x)))

36/38

(Bekki 2014, Tanaka, Nakano & Bekki 2014)

ACT (XS (Mv @ (XX : €)STUDENT(X))
(Zu : (Xy :)BOOK(y))BUY(Vo, (Uo)o))
Most(Ax.(Q; : ...)(c,f)(X))
(AW(@; ..)(c, f)(x) x READ(X, (@; =)((¢, f), X))

Resolution for of them in this system:
((I‘Iv - (XX : €)STUDENT(x))
@,‘ Ly X
(Xu : (Xy : e)BOOK(y))BUY(Vo, (Uo)o)
applied to (c,f) =5 STUDENT

>—>e—>type

What could @, be? It seems that TTS needs an equivalent of
dom to make this work, and it's not obvious how to add it. 36/38

Final thoughts

- Many examples of anaphoric dependencies look like they
depend on functional relationships established in
discourse.

37/38

Final thoughts

- Many examples of anaphoric dependencies look like they
depend on functional relationships established in
discourse.

- We have shown that progress in capturing those
anaphoric dependencies can be made by taking that
impression seriously, i.e. by having sentences denote
functions and allowing those functions to serve as
pronominal antecedents.

37/38

Final thoughts

- Many examples of anaphoric dependencies look like they
depend on functional relationships established in
discourse.

- We have shown that progress in capturing those
anaphoric dependencies can be made by taking that
impression seriously, i.e. by having sentences denote
functions and allowing those functions to serve as
pronominal antecedents.

- We hope to have shown that this is a viable alternative to
placeholders like sets of assignment functions.

37/38

Final thoughts

- Many examples of anaphoric dependencies look like they
depend on functional relationships established in
discourse.

- We have shown that progress in capturing those
anaphoric dependencies can be made by taking that
impression seriously, i.e. by having sentences denote
functions and allowing those functions to serve as
pronominal antecedents.

- We hope to have shown that this is a viable alternative to
placeholders like sets of assignment functions.

- Further work:

- ‘Paycheck’ pronouns.
- Modal subordination.

37/38

This research is funded by the

LEVERHULME
TRUST

38/38

Full(er) details

Mini lexicon

input (left context), output (witness)

student ~ Ai* \ve*".student’vg : Ng ex

Q@ ~s APOTeXBt yyemaxexBmast yjo \y(ex<BXT Piug A V(uo)o(i, Uo)u

: (Say(exﬁ)xw/(saxexﬁ,ﬁ/\l\lP))/Na,exﬁ
WhO ~ \yeaxexfoy—t y pa—exfat

)\ia.)\OeXﬁXV.Pi(Oo, (01)0) VAN VOQ(/, (01)0)(01)1

. (Na,exﬂxv\Na,exﬂ)/(saxexﬁﬁ\NP)

39/38

detweak/ ~

)\Paﬁexﬁﬁt \ye—ax exfB—y—t

NENFEP2T domf C (Ave*P Piv)
A det’(Ax.3b% Pi(x, b))(Ax®.3b” .domf (x, b))
A (¥x2.¥b”.domf (x, b) — Vx(i,x, b)(f(x, b)))

A (¥x8.¥bP (Pi(x, b) A 3c”.domf (x, c)) — domf (x, b))
A —3Ye*E2E (Ax®.3b8 domf (x, b)) € (AxC.3bP.Y(x, b))
AXENBP.Y (x, b) = (Pi(x, b) A 37 .Vx(i, x, b)C)

40/38

‘Half the students who borrowed a book returned it’

Weak/ interpretation:

erxexv_)v.dOmf - ()\VexeXV.Stdnt,Vo A bk/(V1)0 A brrw’(vo, (V1)07 (V1)1))
A half (A€ 3ue*Y.stdnt’x A bk'ug A brrow’(x, u))(Ax€.3u®*".domf (x, u))
A (Vx€ Vue*¥.domf (x, u) — rtrn’(x, o, f(x, u)))

A (Vx®. VU (stdnt’x A bk'ug A brrw’(x, u) A 3¢®**.domf (x, ¢)))

— domf (x, U)

A —3IYeXeV= (Ax@ JueY.domf (x, u)) © (AxC.Fu*V.Y(x, u))
AWXENVUERY. Y (X, u) = (stdnt’x A bK'ug A brrw’(x, u)

A FeV.rtrn’(x, U, €))

41/38

More on telescoping

The subordinating conjunction(s) can be seen as the result of
applying this function to the standard conjunction ;:
A\C(a=(B=7)=1)—=(ax(B8—7)—=(B—0)) ma—(B—7) X (B—d) >t
N == g B E=l= b=t
Cp(Mo®*B=N AFF=7 domf C dom(04) A det’(dom(01))(domf))
A (V6P .domfb — q(09, b, 01)(fb))
A —3XP7t domf C X
AVb? Xb — (dom(01)y A domfy)

42/38

A fuller statement of the TTS account

ACT (XS (Mv : (XX : €)STUDENT(X))
(Xu: (y : e)BOOK(Y))BUY(V0, (U0)o))
Most(Ax.A6YPe \d°.(Q; : (Ma : type)a — e — type)(d)(d)(x))
(AX.AGYPE \d® . READ(X, (©; : (Ma : type)a — e)(6)(d)))
(Mv : (XX : e)STUDENT(X))
(V y))
(Xu : (Xy : e)BOOK(y))BUY(Vo, (Uo)o)

So @, (of them) is of type (Mo : type)a — e — type, and when
applied to its type argument (the third argument of Most
above) the type is as shown on a previous slide.

43/38

This research is funded by the

LEVERHULME
TRUST

44/38

References

Bekki, Daisuke. 2014. Representing anaphora with dependent
types. In Nicholas Asher & Sergei Soloviev (eds.), Logical
aspects of computational linguistics (Lecture Notes in
Computer Science 8535), 14-29. Berlin, Heidelberg: Springer.
https://doi.org/10.1007/978-3-662-43742-1_2.

Gotham, Matthew. 2018. A model-theoretic reconstruction of
type-theoretic semantics for anaphora. In Annie Foret,
Reinhard Muskens & Sylvain Pogodalla (eds.), Formal
grammar: FG 2017 (Lecture Notes in Computer Science
10686), 37-53. Berlin, Heidelberg: Springer.
https://doi.org/10.1007/978-3-662-56343-4_3.

45/38

https://doi.org/10.1007/978-3-662-43742-1_2
https://doi.org/10.1007/978-3-662-56343-4_3

Groenendijk, Jeroen & Martin Stokhof. 1991. Dynamic predicate
logic. Linguistics and Philosophy 14(1). 39-100.

Ranta, Aarne. 1994. Type-theoretical grammar. (Indices 1).
Oxford: Oxford University Press.

Roberts, Craige. 1987. Modal subordination, anaphora and
distributivity. University of Massachusetts at Amherst
dissertation.

Tanaka, Ribeka, Yuki Nakano & Daisuke Bekki. 2014
Constructive generalized quantifiers revisited. In
Yukiko Nakano, Ken Satoh & Daisuke Bekki (eds.), New
frontiers in artificial intelligence: JSAI-isAl 2013 (Lecture
Notes in Computer Science 8417), 115-124. Cham: Springer.
https://doi.org/10.1007/978-3-319-10061-6_8.

46/38

https://doi.org/10.1007/978-3-319-10061-6_8

	Background
	Outline of the proposal
	Examples
	Refset anaphora
	Telescoping

	Discussion
	Comparison with TTS
	Conclusion

	Appendix
	Full(er) details
	References

